Broad Infinity and Generation Principles

Paul Blain Levy

University of Birmingham




Abstract: Broad Infinity is a new and arguably intuitive axiom scheme in set theory. It states that "broad numbers'', which are three-dimensional trees whose growth is controlled, form a set. If the Axiom of Choice is assumed, then Broad Infinity is equivalent to the Ord-is-Mahlo scheme: every closed unbounded class of ordinals contains a regular ordinal.

Whereas the axiom of Infinity leads to generation principles for sets and families and ordinals, Broad Infinity leads to more advanced versions of these principles. The talk explains these principles and how they are related under various prior assumptions: the Axiom of Choice, the Law of Excluded Middle, and weaker assumptions.